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On linear and exponential type non-linear lattices 
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Abstract. A method of linearisation of the infinite Toda lattice is proposed, which enables 
one to recognise the relation between the infinite Toda lattice and the harmonic lattice 
straightforwardly. 

1. Introduction 

Since the integrable character of an exponential type non-linear lattice, the so-called 
Toda lattice [l], was recognised [2-41, it has received interest as a typical non-linear 
integrable model. As far as the finite (periodic) system is concerned, the integrability 
implies that the equations of motion of this non-linear lattice are canonically equivalent 
to those of the harmonic lattice. As for the infinite system, the situation seems to be 
rather different. In this case, although the inverse scattering method affords us a 
non-linear transformation such that the transformed variables (the scattering data) 
evolve linearly in time, it seems difficult to prove that these linearised equations are 
equivalent to the equations of motion of the harmonic lattice?. 

It is therefore desirable if one can find a method of linearisation which enables 
one to recognise the relation between the infinite Toda lattice and the harmonic lattice 
clearly. 

This Faper is written with the purpose of proposing such a method. According to 
this method, it can be shown straightforwardly that the equations of motion of the 
infinite Toda lattice are reduced to those of the harmonic lattice, i.e. the former are 
governed by the latter, but not vice versa. So, within the framework of our method, 
they are not equivalent to each otherS. 

2. Some preliminaries 

Lattice vibrations of solids in one dimension are modelled by the Hamiltonian 

x= 1 pzk/2m+ ( b ( x k + l - x k )  
- - T c ~ < x  - x < k < r  

t The inverse scattering method also allows one to write down the dynamics of the Toda lattice in terms of 
normal mode Hamiltonian [ 5 ]  which consists of non-soliton (continuous) and soliton (discrete) parts, such 
that the non-soliton pan is equivalent to the normal mode Hamiltonian of the harmonic lattice. 
$ This conclusion, of course, relies on the particular method of linearisation presented here and does not 
exclude the possibility of proving the equivalence by other methods. 
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where m is the mass of atoms constituting the lattice, x k  denotes the displacement of 
the kth atom from its equilibrium position, P k  is the conjugate momentum and 4 ( r )  
stands for the interaction potential between the neighbouring atoms. 

Equations of motion for this system are given by 

X k  = p k / m  (2 . la)  

b k  = 4 ' ( x k +  I - xk - 4 ' ( x k  - x k -  I ) 4'( r )  = dc$( r)/dr. (2 . lb)  

For the harmonic lattice, the interaction potential 4 ( r )  is specified by 

dJ(r) = (K/2)r2 K > O  

while in the Toda lattice 4 ( r )  is given by [ l ]  

4(  r)  = ( a /  6) exp( - br) + ar ab>O 

so that (2.lb) turns out to be 

P k  = K ( & + I  - 2xk - xk - 1 

p k  = a{exp[b(xk-l --xk)l-expCb(xk - X ~ + ~ ) I I  

(2.2) 

and 

(2.3) 

Without loss of generality, we can set in these equations all the constants m, K, a 
respectively. 

and b equal to 1. Then it follows from ( 2 . 1 ~ )  and (2.2) that 

y k  = Y k + l - Y k - l  

with 

Y 2 k - 1  = - P k  Y 2 k  = x k  - X k t  1 . 
Similarly, from ( 2 . 1 ~ )  and (2.3), 

= Ak(bk+i - bk) b k  = Ak - Ak-l 

with 

Ak = exP(xk -xk+l) bk = - P k ,  

Then our purpose is to show that (2.6) are reduced to (2.4). 

(2.4) 

3. Derivation of the results 

In order to do this, we first consider the system of non-linear differential equations 

Y k  = Y k ( Y k + l  - Y k - l )  k =  1, 2 , .  . . ; y k (  # 0 )  E [w, Y,=o  (3.1) 

j k  = $ k + l  k = 1 , 2 , ,  . , (3.2) 

which, by virtue of the results of a previous paper [6], can be reduced to t  

where no restrictions are imposed on the behaviour of the variables yk at infinity 
( k  + a) except that yk # 0. 

+ For the sake of simplicity, we have omitted the factor 4 in 6, = 4&+, , 
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The reason for considering (3 .1)  instead of directly dealing with (2.6) is that one 
can relate easily the two semi-infinite ( k  = 1 , 2 ,  . . .) systems with a doubly infinite 
( k = 0 , * 1 , * 2  ,...) one. 

Thus we write a copy of (3.1) 

$k = f k  ( f k  + 1 - f k  - 1 (3.3) 

(3.4) ; -s' 

@ k  = P k  ( P k +  1 - P k - I )  k = 0 ,  * 1 , * 2 , .  . . ;  P k ( f O ) E [ w .  (3.5) 

@ o = P o ( P i - P - l )  

k = 1,2, . . . ; f k  ( f 0) E [w, fo = 0 

which is reduced to 

k = 1,2,. , , k -  k + i  

and consider a doubly infinite system 

The differential equation for k = 0 

is rewritten as 

Y i  = Y l Y 2  

Yl  =Po 
Y2 =Pi  - P - l .  

with 

Similarly, the equation for k = -1  

@ - I  = P - , ( P o - P - * )  

$1 = f l J 2  

is the same as 

with 

( 3 . 6 ~ )  

(3.6b) 

f l  = P-1 ( 3 . 7 ~ )  

92 = P o  - P-2 .  (3 .7b)  

It follows from these that the system (3 .5)  for k = -1,0 is equivalent to the composite 
system of (3.1) and (3 .3)  for k = 1 ,  where in order to make y k ,  J k  (k  = 1 , 2 )  and P k  

( k  = -2, - 1 , O ,  1 )  different from zero, the following restrictions are imposed: 

P k # O  k = -2, - 1 , O ,  1 Pi -P-i  g o  P o - P - 2 # 0  ( 3 . 8 ~ )  

Y l ,  fig 0 $1 +YZ f 0 Y i  -J* # 0. 

It further follows from (3 .6b)  and (3.5) that 
(3 .86)  

Y Z  = [P I (P2  - P o )  - P -  1 ( P o  - P-JI = YAY3  - Y 1) 

which defines y ,  in terms of { P k } t ~ ! 2 ~ { ( P k } ~ 2 ,  or p2 in terms of ( { y k } ? , { p k } t ) .  

It is obvious that for each { P k } ! ,  satisfying the conditions ( 3 . 8 a ) ,  there exists a 
single value of p 2 ,  denoted by PS, that makes y3  equal to zero, and also for each 
( { y k } : ,  { j i } : )  satisfying (3.861, there exists a value of y 3 ,  denoted by y : ,  that makes 
P 2  equal to zero. 

Similarly, taking account of (3 .76)  and (3 .5) ,  we have 

$2 = [Po(Pi - P - I )  - P - ~ ( P - I  -P-3)1= f z ( f 3 - j i )  
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which defines y3 in terms of { P k } ! 3 ,  or P - ~  in terms of ( { y k } : ,  { F k } : ) .  Again, for each 
{ P k } ! 2  there exists a value of P - 3 ,  denoted by P i 3 ,  that makes j 3  equal to zero, and 
for each ( { y k } : ,  { f k } : )  there exists a value of .F3, denoted by y;, that makes P-3 equal 
to zero. 

In addition to the restrictions (3.8), we must impose the following so as to make 
y k ,  yk ( k  = 1,2,3)  and Pk ( k  = -3,. . . , 2 )  different from zero?: 

P 2 + 0 , P :  Y 3  f 0, Y :  (3.9) 

P - 3  + 0,  P i 3  f 3  f 0, & * (3.10) 

Under the restrictions (3.8) and (3.9), the system (3.5) for k = -1,O, 1 is equivalent to 
the composite system of (3.1) for k = 1 , 2  and (3.3) for k = 1. Similarly, under the 
restrictions (3.8), (3.9) and (3.10), the system (3.5) for k = -2, -l,O, 1 is equivalent to 
the composite system of (3.1) and (3.3), both for k = 1,2. 

We can continue this procedure to recognise that, under certain restrictions on the 
variables, the doubly infinite system (3.5) is equivalent to the composite system of 
(3.1) and (3.3). These restrictions are solely imposed so as to make all the variables 
{ y k } ? ,  { y k } F  and { p k } ? x  different from zero, which is necessary for the correspondence 
between ( { y k } ? ,  { y k } F )  and { P k } ? m  to be defined in the manner just described above. 

Since the systems (3.1) and (3.3) are reduced to (3.2) and (3.4), respectively, this 
result immediately implies that, under these restrictions, the system (3.5) is reduced 
to the composite system of (3.2) and (3.4). 

i k  = z k + l  - zk-1 

which is further equivalent to (2.4) with the transformation given by 

Now, it is easy to see that this composite system is equivalent to$ 
L e  

z k  = z k + l -  z k - 1  k = 1,2, . . . zo = 20 = 0 

ZI  = Yo i, = y-1 z 2  = Y 2  - Y-l 2 2 = Y O - Y - 2  

2 3  = 7 2  - YO+ 7 - 2  f 3  = Y l  - Y-I + Y - 3  

z4 = Y3 - Y l +  Y-I - Y-3 24 = 7 2  - YO+ 7 - 2  - 7 - 4  * 

etc. On the other hand, (3.5) are transformed to (2.6) by 

A k  = P Z k P 2 k - 1  b k = P 2 k - l + P 2 k - 2  k = 0 , * 1 , * 2  , . . . .  (3.11) 

We have thus established the existence of a mapping from { Y k } ? m  to 
( (Ak}Zm,  {bk}?J such that the time change of {yk}?= according to (2.4) causes the 

Besides the fact that our result does not claim the equivalence of the infinite Toda 
lattice to the harmonic lattice§, it should be noticed that, although we have got rid of 
the restriction that the motion of the lattice rapidly decreases at infinitiesll, which is 
inevitably imposed in the inverse scattering treatment, we have encountered another 
kind of restriction. In order to avoid overcomplication, we do  not give any detailed 

eVolUtiOIY (2.6) of ( { A k } ? = ,  { b k } T % ) .  

i It should be noticed that these conditions actually concern the initial values of the infinite systems (3,1),  
(3 .3)  and (3.51, since if they are satisfied initially i t  remains so at any time. 
2 The transformation leading to this equivalence is given by 6, = z , ,  8, = i, ( i  = 1,2), 6, = z3 - z ,  , g3 = i, - i, , 

5 This stems from the fact that the mapping vi = S , + , / S ,  (see the expression below (14) of [ 6 ] )  is not one 
to one. The same situation also arises in (3.11). 
11 Thi\ 1 5  because our  method allows one to attack the problem from some finite point, say k = 0, while in 
the inver\e scattering method one attacks from the infinities ( k  = *cc). 

6,=z,-2z2, 6 4 = 5 , - 2 i 2 , . , . .  
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account of them, but only remark that on account of these restrictions it becomes 
rather ambiguous whether or not our method applies to the case of periodic boundary 
conditions. 

We also remark that all the non-linear transformations involved in our method, i.e. 
the transformations between ( {yk}? ,  I F k } ; )  and ({  v k } ? ,  { f i k } ; ) ,  between ( {  vk}T;, { f i k } ? )  

and ( { & } ? ,  {&};) (see [6]), between ( { y k } : ,  {F~} ;C)  and {pk}Tm, and the one between 
{ p k } T X  and ( { A k } ? = ,  { b k } ? = ) ,  admit some kinds of concrete expressions. The situation 
should be compared with the method of inverse scattering [4], where the non-linear 
transformation used to linearise (2.6) is afforded by solving the scattering problem 
associated with a certain infinite Jacobi matrixt, and in order to obtain the expression 
of ({Ak}Tr, { b k } x r )  in terms of the scattering data, one must solve the Marcenko 
equation. 
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